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Abstract: We analyze the Second Law of black hole mechanics and the generalization of

the holographic bound for general theories of gravity. We argue that both the possibility of

defining a holographic bound and the existence of a Second Law seem to imply each other

via the existence of a certain “c-function” (i.e. a never-decreasing function along outgoing

null geodesic flow). We are able to define such a “c-function”, that we call C̃, for general

theories of gravity. It has the nontrivial property of being well defined on general spacelike

surfaces, rather than just on a spatial cross-section of a black hole horizon. We argue that

C̃ is a suitable generalization of the concept of “area” in any extension of the holographic

bound for general theories of gravity. Such a function is provided by an algorithm which

is similar (although not identical) to that used by Iyer and Wald to define the entropy of

a dynamical black hole. In a class of higher curvature gravity theories that we analyze

in detail, we are able to prove the monotonicity of C̃ if several physical requirements

are satisfied. Apart from the usual ones, these include the cancellation of ghosts in the

spectrum of the gravitational Lagrangian. Finally, we point out that our C̃-function, when

evaluated on a black hole horizon, constitutes by itself an alternative candidate for defining

the entropy of a dynamical black hole.
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1. Introduction

It is known that, in a general theory of gravity including higher derivative couplings, the

entropy of a stationary black hole is no longer given by a quarter of the area of the event

horizon. It was shown in [1, 2] that the definition of entropy which obeys the First Law

of black hole mechanics is, instead, given by the integral of a particular local quantity
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on a spatial cross-section Σ of the event horizon. In a theory which does not depend on

covariant derivatives of the Riemann tensor, the expression for the entropy is:

SBH = −2π

∫

Σ

∂L

∂Rabcd
εab εcd

√
hdΩ . (1.1)

where the Lagrangian of the theory is L =
√−g L (i.e. L is a scalar), partial derivatives

with respect to the Riemann tensor have to be taken as if it was a quantity independent of

the metric,1 εab denotes the binormal to the horizon cross-section (i.e. the volume element

in the 2-space perpendicular to it) normalized so that εabε
ab = −2, and

√
hdΩ is the volume

element induced on Σ. The overall normalization is for units GN = 1. In General Relativity

the above expression reduces to one quarter of the area of Σ but, in more general theories,

it differs from it.

This generalization of the expression for BH entropy poses two important questions:

1 Does this expression for SBH obey a Second Law of black hole mechanics?

2 How should we generalize the notion of “area of the boundary” of an arbitrary phy-

sical system in establishing any holographic bound in a general theory of gravity?

Question 1 above was considered in [3] for a class of theories where the gravitational

Lagrangian is a function of the scalar curvature, i.e. L = L(R). It was shown that, if

certain conditions of “positivity of energy” (together with Cosmic Censorship and assuming

asymptotic flatness, as in the GR case) are satisfied, then a Second Law holds for SBH in

the L(R) theories whenever the equations of motion are obeyed. In general, proving a

Second Law is a difficult task, since it is not clear which physical conditions have to be

obeyed in a general theory of gravity for the Second Law to hold. Also, imposing the

equations of motion is straightforward in principle, but technically difficult in practice.

On the other hand, Question 2 arises because, as it is well known, the upper limit on

the degrees of freedom of a system being set by the area of its boundary comes from black

hole physics. The original argument of ’t Hooft [4] uses the fact that any physical system

confined in volume V has to collapse to form a black hole long before its entropy exceeds

the area of the boundary of V in Planck units. Adding entropy to the resulting black hole

would just increase its size. Therefore, the maximal entropy that can be physically realized

in a given volume is that of a black hole of the same size. However, when we go further

and use this fact to establish a universal holographic bound, we are concerned with the

intrinsic properties of the boundary of an arbitrary spacetime region. i.e. we do not restrict

ourselves to the case in which the physical system is a black hole, nor to the case where

the boundary of the system is an event horizon. Consequently, when the entropy of a black

hole is no longer given by its area, Question 2 arises naturally.

The first natural guess to answer Question 2 would be to use equation (1.1) but,

instead of restricting ourselves to the cross-section of the event horizon of a black hole,

1It was shown in [2] that, in any covariant theory, the dependence of L on the derivatives of the metric

can always be written as a dependence on the Riemann tensor and its covariant derivatives only, i.e.

L = L(gab, Rabcd, . . .). The derivative in (1.1) means the derivative of L when rewritten in such a way.
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simply perform the integral over the surface of interest (the boundary of the spacetime

region considered). However, this is not satisfactory since (as discussed originally in [1]

and further in [5] — see also [2]) the local quantity that one integrates in (1.1) is only well

defined when evaluated on an spatial cross-section of a Killing horizon, but it is ambiguous

when evaluated on a general spacelike surface.

Below we will show that a generalized concept of “area of the boundary” (which reduces

to (1.1) in the case of a black hole horizon) exists and it is well defined for general, spacelike,

codimension two surfaces, irrespective of them being cross sections of a Killing horizon or

not. Our definition will be very close to the proposal in [2] for the entropy of a dynamical

(i.e. non-stationary) black hole, although it will differ slightly from it.

In this paper we would like to emphasize the fact that Questions 1 and 2 are related

to a third one, namely:

3 Can we define a “holographic c-function” in general theories of gravity?

Let us stress that we will use the name “c-function” throughout the paper just by

analogy, and that by this we do not necessarily mean the true holographic dual of a field

theory c-function. By a “c-function” we just want to refer here to a non-decreasing function

along “outgoing” null geodesic flow (i.e., for flat/AdS/dS asymptotics, a non-decreasing

function of the radial variable). We will see that monotonicity of such a “c-function” is

the behaviour required on physical grounds to address the Second Law. In particular, we

will show below that, in AdS, this function is a strictly increasing one, and not a constant

as one would expect for a true field-theory c-function in a CFT.2 Nevertheless, we shall

keep sometimes the name “c-function” for it, but we prefer to denote it by C̃. In the case

of Einstein gravity coupled to arbitrary matter fields obeying the null energy condition,

the existence of such a function in static backgrounds was proved recently in [6]. Earlier

attempts to define a (“true”) holographic c-function include [7].3

Roughly, the basic relation between Questions 1, 2 and 3 can be put like this: assume

that C̃ exists and that it is well defined on arbitrary spacelike surfaces which need not be

the horizon of a black hole. Then, if C̃ can be shown to equal the black hole entropy when

evaluated on a spatial cross-section of a black hole horizon, then it clearly constitutes a

natural candidate for the answer of Question 2. Assume further that C̃ is non-decreasing

along a congruence of outgoing radial null geodesics. Then this means that it cannot

decrease along the affine parameter of the null geodesic generators of the horizon, which

in turn implies the Second Law. Along the paper we will elaborate more carefully on all

these statements.

Our considerations are completely general and, in particular, our definition of the C̃-

function should be applicable in general theories of gravity. However, as an application of

our proposal, in this paper we restrict ourselves to a particular class of theories. These are

the theories with a Lagrangian L =
√−g L given by:

L = Lg(R,P,Q) + Lm(gab, ψ, ∂ψ) (1.2)

2We will elaborate a bit more on this in section 5.2.3.
3Considerations on holography in higher curvature gravity from a different perspective have recently

appeared in [14].
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where R denotes the Ricci scalar, P = Rab Rab, Q = RabcdR
abcd, and ψ denotes any

matter fields.4 The consistency of these theories has been studied recently in [8]. We will

show below that, for these theories, if the matter fields obey the null energy condition

and, further, if the theory is ghost-free, a C̃-function exists which satisfies all the above

requirements. Throughout the paper we will restrict ourselves to four dimensions, but our

results should generalize in a straightforward way to any number of spacetime dimensions.

Finally, let us mention that our definition of C̃ constitutes, by itself, an alternative

candidate to the proposal in [2] for the definition of the entropy of a dynamical black hole.

We will comment a bit on this in the Conclusions.

2. Holographic c-functions, Raychaudhuri equation and the Second Law

In order to fix ideas, let us start by reviewing the result of [6] as well as some properties

of the Raychaudhuri equation and the Second Law of black hole dynamics in GR.

2.1 A c-function in general relativity

The authors of [6] showed that, in four dimensional Einstein gravity coupled to any matter

fields subject to the null energy condition, any spherically symmetric, asymptotically flat

spacetime:

ds2 = −a(r) dt2 + a−1(r) dr2 + b(r) dΩ2 , (2.1)

admits a “c-function”, C̃, which is given by the area A of a transverse sphere at radius r:

C̃ ≡ 1

4
A(r) = πb(r) . (2.2)

It was shown in [6] that the equations of motion imply that C̃ is a never-decreasing function

of the radial variable. Note that, in a black hole spacetime, C̃ at the horizon equals the

black hole entropy.

2.2 Relation to Raychaudhuri equation

As already noted in [6], the monotonicity of C̃ can be understood as a simple consequence

of the Raychaudhuri equation. Let us briefly review this.

Consider an arbitrary spacetime (static or otherwise) with metric gab, and let p be

a point of this spacetime. Consider a null geodesic congruence in a vicinity of p and, in

particular, the geodesic of the congruence passing through that point. Let k ≡ ka∂a = d/dλ

be the corresponding tangent vector, λ being the affine parameter of the congruence. Define

another null vector on the tangent space of p, n ≡ na∂a = d/dσ, satisfying kana = −1 and

ka∇an
b = 0. Consider finally two linearly independent spacelike vectors ηa

(i)∂a = d/dxi,

i = 1, 2, orthogonal to k and n. The corresponding dual forms define a differential volume

form in the space orthogonal to ka and na given by:

dV =
√

h dx1 ∧ dx2 , (2.3)

4We are assuming that Lm that matter fields do not couple explicitly to the curvature, and that further

couplings do not arise from terms of the form ∇ψ (see footnote 1). This is always the case of any theory

with arbitrary couplings to scalar, axion and gauge fields.
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with

hij = ηc
(i)η

d
(j) gcd . (2.4)

Raychaudhuri equation tells us about the local behaviour of the expansion ϑ of the con-

gruence. The expansion is given by:

ϑ =
d
√

h/dλ√
h

=
d logA

dλ
, (2.5)

where A is the transverse area spanned by the congruence (i.e. the magnitude of an area

element of the “wavefront”). From this expression one demonstrates that:

dϑ

dλ
= −1

2
ϑ2 − σabσab − Rabk

akb, (2.6)

where σab is the shear of the congruence. This is Raychaudhuri equation. Note that this

equation relies only on the geometry of the spacetime, and hence is independent of the

dynamics of the theory. From this expression, using the fact that, in General Relativity,

Tabk
akb = Rabk

akb, and assuming the null energy condition (Tabζ
aζb ≥ 0 for every null

vector ζa), one gets the inequality:

dϑ

dλ
≤ −1

2
ϑ2 ≤ 0 . (2.7)

Assume now asymptotic flatness. This means, in particular, that we have a well defined

“radial coordinate” r. If we take the congruence to be “outgoing” (i.e. dr/dλ > 0) then we

have, at infinity, A ∼ r2. Therefore we get:

ϑ → 0+ (2.8)

asymptotically. Assume now that ϑ cannot diverge. This, together with the fact that

dϑ/dλ ≤ 0, means that:

ϑ ≥ 0 , (2.9)

for all λ, and therefore A can never be decreasing along the outgoing null geodesic flow.

Concerning the behaviour of ϑ, we note that it can only diverge at a naked singularity

(forbidden if one assumes Cosmic Censorship) or at a caustic. However, it is easy to prove

from equation (2.7) that ϑ cannot diverge at any finite affine parameter λ if, initially, we

have ϑ(λ = 0) > 0. In such a case this implies the existence of a “c-function” C̃ ∼ A.

Conversely, if a “c-function” C̃ exists, then ϑ is never negative along outgoing null geodesic

flow. We will next see that, in such a case, this immediately implies the Second Law.

Consider now the particular case of a static spacetime (2.1). In such a case A in (2.5) is

precisely the area of transverse spheres, as in eq. (2.2). In terms of the radial coordinate of

the metric (2.1) this just means that the “c-function” C̃ defined in (2.2) is a non-decreasing

function of r [6].5

5Previous attempts to find holographic c-functions have also been based on the Raychaudhuri equa-

tion [7].

– 5 –



J
H
E
P
0
1
(
2
0
0
7
)
0
4
5

2.3 Relation to the Second Law

Consider now a black hole spacetime. Establishing the Second Law of black hole mechanics

amounts to prove that:
dSBH

dλ
=

∫

Σ
ϑ
√

hdΩ ≥ 0 , (2.10)

where, in the expression above, Σ is a cross-section of the event horizon,
√

h is an area

element of it, and ϑ is defined along the outgoing null geodesic congruence orthogonal

to Σ (ka in (2.6) becomes here the null vector field tangent to the horizon generators).

Therefore, to prove (2.10) it is enough to prove that θ ≥ 0 at every point along the (future

directed) generators of the (future) event horizon [12].

The latter requirement (ϑ ≥ 0 along outgoing null geodesic flow and, in particular,

also along the horizon generators) is precisely what we have just proved in the previous

paragraph, eq. (2.9). Moreover, it is well known that ϑ < 0 at any point along the null

horizon generators violates Cosmic Censorship [12]. Recall that the requirements to prove

that ϑ > 0 this were the EOMs to be satisfied, the null energy condition, asymptotic

flatness and Cosmic Censorship.

However, as we have seen, this is equivalent to the statement of the C̃-function defined

in (2.2) being monotonic. Although in [6] the function C̃ was originally defined just for

static spacetimes, this symmetry property was not used at all in the proof of it being

monotonic. The only thing that we need is the function C̃ to be defined along null geodesic

flow (the latter being spherically symmetric or otherwise). To relate monotonicity of C̃ to

the Second Law, the only additional requirement is that, if C̃ is evaluated on a black hole

horizon, it should equal its entropy.6

3. Lg(R) theories

All these results reviewed above are valid in General Relativity. Next we wish to consider

the simplest class of Lagrangians of the form (1.2) in which the gravitational Lagrangian

is only a function of the scalar curvature, Lg = Lg(R). The validity of the Second Law for

these theories was considered in [3]. Here we want to review their result, discuss the Second

Law, and finally obtain a consistency condition that will be used later in the general case

of arbitrary Lagrangians of the form (1.2).

3.1 “Generalized” Raychaudhuri equation

Consider an arbitrary spacetime and a null geodesic congruence defined as in section 2.2.

We define now the function:

C̃ = −2π
∂Lg

∂Rabcd
εabεcd

√
h = 4πLR

√
h , (3.1)

6Heuristically, note that the fact that eC = A/4 is a non-decreasing function of r fits nicely with the

holographic principle (“the total number of degrees of freedom in a region is bounded by the area of its

boundary”) and the meaning of the c-theorem in field theory (“the number of degrees of freedom cannot

decrease along the RG flow”).
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where εab = kanb − kbna stands for the binormal of the surface defined by dV in eq. (2.3),

and we define LR as LR ≡ ∂Lg/∂R. In analogy to the GR case, we now define:

ϑ̃ ≡ d log C̃

dλ
= ϑ +

1

LR
ka∇aLR (3.2)

(where ϑ is the expansion defined as in eq. (2.5)). Hence:

dϑ̃

dλ
= −1

2
ϑ2 − σabσab − Rabk

akb − 1

L2
R

(
kb∇bLR

)2
+

1

LR
kakb∇a∇bLR, (3.3)

where we have used the Raychaudhuri equation. On the other hand, the Einstein equations

for a Lagrangian of the form (1.2) with Lg = Lg(R) are given by:

LR Rab +

(
∇2LR − 1

2
Lg

)
gab −∇a∇bLR = Tab , (3.4)

where:

Tab =
1

2
Lm gab −

∂Lm

∂gab
. (3.5)

Since ka is null, we get, from (3.4):

Tabk
akb = LR Rab kakb − kakb∇a∇bLR . (3.6)

Finally, using the above equation in (3.3), we have:

dϑ̃

dλ
= −1

2
ϑ2 − σabσab −

1

L2
R

(
kb∇bLR

)2
− 1

LR
Tabk

akb . (3.7)

This implies that:

dϑ̃

dλ
≤ 0 (3.8)

whenever the null energy condition holds if, additionally:

LR > 0 . (3.9)

Equation (3.8) is the analog to the inequality (2.7) obtained in GR from the Raychaudhuri

equation for a congruence of null geodesics, in which the area A swept by the congruence

has been replaced here by C̃.

The “generalized Raychaudhuri equation” (3.7) implies that dϑ̃/dλ ≤ 0 if the condition

LR > 0 is met.7 Such a condition is dependent both on the theory and on the specific

background considered. However, suppose that LR < 0 for a specific background whose

Ricci scalar we denote by R0. Then, the weak field expansion of the metric around such a

background would be the one obtained from the Lagrangian:

Lg = Lg(R0) +

(
∂Lg

∂R

)

R=R0

(R − R0) + · · · , (3.10)

7Note that this is linked to the matter satisfying the null/“antinull” energy condition.
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and therefore we would get a negative gravitational coupling in the spacetime regions

where (3.9) does not hold.8 Note that this condition (positivity of the effective GN ) is a

natural generalization of the null energy condition for this class of theories, since the n.e.c.

can be rephrased as the requirement of gravity being universally attractive.

These results (with focus on the Second Law, which we now turn to discuss) were

derived in [3], and the same consistency condition (3.9) was obtained there. In [3] the

condition LR > 0 was derived by going to an auxiliary theory (dynamically equivalent to

the Lg(R)-theory) described by Einstein gravity coupled to an scalar field.

3.2 A “c-theorem” and the Second Law

Eq. (3.7) means that, when LR > 0:

ϑ̃ = ϑ +
dLR/dλ

LR
(3.11)

is a decreasing function. Consider now an asymptotically flat background (with radial coor-

dinate r) and, as in section 2.2, a congruence of “outgoing” null geodesics (i.e. dr/dλ > 0).

In such a case we have, asymptotically:

R ∼ 1/r3 , ϑ ∼ 1/r > 0 , (3.12)

since, in asymptotically flat spacetime of dimension D, all the components of the Riemann

tensor vanish at least like ∼ 1/rD−1. (We have that ϑ ∼ 1/r > 0 asymptotically by

the same argument used in section 2.2.) If the gravitational interaction is of the form

Lg = R + O(R2) + · · · we find that:

ϑ̃ → 0+ , (3.13)

asymptotically. Assuming again Cosmic Censorship (and by an argument analogous to that

used in section 2.2) this implies, together with the fact of ϑ̃ being monotonically decreasing

with r, that:

ϑ̃ ≥ 0 (3.14)

for all values of r, meaning that the function C̃ defined in eq. (3.1) is a never decreasing

one along the null geodesic congruence. Let us stress again that, conversely, if one proves

monotonicity of C̃, then the condition (3.14) follows immediately.9

Note that, by construction, in the case of a black hole spacetime, C̃ equals the black

hole entropy (1.1) when evaluated at the horizon. The analogous of eq. (2.10) for this class

of theories is therefore [3]:
dSBH

dλ
=

∫

Σ
ϑ̃
√

hdΩ ≥ 0 . (3.15)

The relation the “c-theorem” just proved to the Second Law of black hole mechanics is

exactly analogous to the proof sketched in section 2.3 if we replace ϑ by ϑ̃. The fact that,

also in this case, ϑ̃ < 0 at the horizon generators also violates Cosmic Censorship was

proved in [3].

8Remember that the Newton constant GN is defined by the coefficient of the term ∼ (∂h)2 in a weak

field expansion of the metric, δgab ∼ hab.
9We insist on this since it is (3.14) what implies the Second Law.
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4. A C̃-function in higher curvature theories

In the last sections we have seen that it is possible to define a function C̃ in GR and in

theories with gravitational Lagrangian Lg(R) which has the following properties:

a) It can be evaluated in any arbitrary spacelike surface.

b) When evaluated at the event horizon of a black hole it equals its entropy.

c) If certain physical conditions and certain boundary conditions are satisfied, then C̃

is a non-decreasing function along outgoing null geodesic flow.

Given a C̃-function with these properties, the following consequences are implied:

• a) and b) make of C̃ a natural candidate to generalize the notion of “area” in any

generalization of the holographic bound in these higher curvature theories.

• b) and c) imply the Second Law of black hole mechanics in these theories.

These conclusions explicitly answer Questions 1 and 2 in the Introduction. At this

point, however, we have to stress the following issue: in more general theories of gravity, a

C̃-function defined as in (3.1), i.e.:

C̃ ∼ ∂L

∂Rabcd
εabεcd

√
h (4.1)

cannot be well defined in general. The ambiguity arises from the fact that one can always

add a total divergence or a topological term10 to the Lagrangian. This addition leaves the

dynamics of the theory unchanged but, on the other hand, if such terms depend on the

curvature, they will clearly change the expression of C̃ if defined as above.11 Of course,

the expression (4.1) is unambiguously defined when evaluated on a spacelike cross-section

of the event horizon of a stationary black hole (cf. eq. (1.1)), but not on general spacelike

surfaces, thus failing to fulfill requirement a) above. Below we briefly review what makes

a BH horizon special in this respect.

10By this we mean terms like, for instance, a Gauss-Bonnet density in four dimensions. Such term just

adds a topological constant to the action (the Euler number of the manifold) and thus it does not affect

the equations of motion.
11For simplicity, in this paper we restrict ourselves to the case in which L does not depend on derivatives

of the Riemann tensor. Therefore, in four dimensions, the only cases we could be concerned with are the

ambiguities arising from the addition to the Lagrangian of a Gauss-Bonnet density (first Euler class) or

the first Pontrjagin class (however, only the Gauss-Bonnet density will belong to the particular class of

theories considered in detail below). Let us point out that, in general theories depending on derivatives of

the curvature up to order m, the generalization of eq. (1) is:

SBH = −2π

Z

Σ

„
∂L

∂Rabcd

−∇a1

∂L

∂∇a1
Rabcd

+ · · · + (−1)m∇(a1···
∇am)

∂L

∂∇(a1···
∇am)Rabcd

«
εab εcd

√
h dΩ ,

and thus all considerations above are qualitatively the same in this case. Therefore we do not foresee any

essential difficulty in extending our results in a straightforward manner to more general theories depending

on derivatives of the curvature.
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Our result for the Lg(R)-theories is nevertheless valid, since, in four dimensions, one

cannot build total derivatives out of R alone. However, any definition of C̃ in a general

theory will necessarily have to face this issue.12 Hence we see that, in a general theory, we

have to refine the “naive” definition of C̃ so that it has the following property:

d) Its definition has to be absent from any ambiguities. In particular, we require from

C̃ to be insensitive to the addition of a total derivative or a “topological density” to

the Lagrangian.

Another nontrivial challenge when considering more general theories of gravity is to

find out which are the “physical conditions” to be fulfilled in order to have property c)

above. In particular, it is nontrivial to foresee what should be the corresponding conditions

of “positivity of energy”. In a general theory, one has to find how the generalization of

condition (3.9) comes about, if such condition is physically meaningful, and if imposing

such condition makes sense on physical grounds.

This section is devoted to the construction of a C̃-function that satisfies by construc-

tion properties a), b) and d) above. The proof of property c) beyond the case Lg(R)

is complicated in general. Nevertheless, we will see that, in Lagrangians of the form

Lg = Lg(R,P,Q) (see eq. (1.2)), whenever the theory is known to be physically meaning-

ful,13 property c) above is also obeyed.

4.1 Construction of the C̃-function

Let us show now how one can define a function C̃ fulfilling all the requirements a), b)

and d) presented at the beginning of this section. In particular, let us start by discussing

in detail points a) and d) above when the C̃-function is taken to be of the form (4.1).

That is, we start by analyzing the generalization provided by formula (1.1) when evaluated

on a general spacelike surface S rather than just on a black hole horizon, i.e.:

SBH[g,S] = −2π

∫

S

∂L

∂Rabcd
εab εbc

√
h dΩ , (4.2)

where, in the l.h.s., g makes explicit reference to the background, and S indicates the

surface on which the functional SBH is to be evaluated. As discussed in the previous

section, this expression is, in general, sensitive to the addition to the Lagrangian of a total

derivative depending upon the curvature. Consider however the case of a stationary black

hole spacetime. In such a case, it is believed that the BH horizon is always a Killing horizon

of some Killing vector ξa.14 In [2] it was shown that all additional terms arising in SBH from

the addition of an exact form to the Lagrangian are always proportional to ξa. Therefore,

12In fact, we will give below a general definition of eC which is free of these ambiguities, and we will see

that it reduces to the form (4.1) for the particular case of theories with a Lagrangian Lg = Lg(R).
13In particular we are talking about the cancellation of ghosts in the spectrum — see below.
14As it is well known, this fact was proved in [12] for GR. While this fact has not been proved for an

arbitrary higher curvature theory of gravity, no counterexamples are known to the best of our knowledge.

In particular, this property automatically holds for static, spherically symmetric black holes, as argued

in [1].
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if the integration surface is chosen to be the bifurcation surface, Σbif , of the Killing horizon

(which is, by definition, the surface at which ξa vanishes), these contributions cancel.15

Furthermore, the authors of [5] (see also [2]) showed that:

SBH[g,Σbif ] = SBH[g,Σ] , (4.3)

where Σ above is any arbitrary spacelike cross-section of the horizon. As a result, SBH[g,Σ]

is always well defined, but, on the other hand, it will be clearly ambiguous if the surface

of integration is taken to be an arbitrary surface S.

The crucial point in this paper is to find a generalization of SBH[g,Σ] which is well

defined on any arbitrary surface S. Moreover, we necessarily require such a generalization

to reduce to SBH[g,Σ] when gab describes a stationary BH spacetime and the surface S is

chosen to be a cross-section Σ of the BH horizon. This problem was essentially solved by

Iyer and Wald in [2]. In that reference they provided an algorithm to define the entropy

of a dynamical (i.e. non-stationary) black hole. Such a case confronts the same problems

we have here since, in general, the event horizon will no longer be a Killing horizon (a

non-stationary black hole spacetime may have no Killing vectors at all). Our solution to

the problem at hand is clearly inspired by Iyer and Wald’s proposal for the entropy of a

dynamical black hole; however, it differs from it. For the interested reader, we review their

proposal in appendix A (the remaining of the paper is however self-contained and does not

require the use of the results reviewed in the appendix).

4.1.1 General idea

In order to provide a generalization of (4.2) which is well defined on arbitrary spacelike

surfaces, we proceed as follows. As in [2], instead of modifying the functional form of

SBH[g,S] given in (4.2), we provide an algorithm that deforms the spacetime metric gab in

the vicinity of S. We call g̃ab the metric of this deformed spacetime. This deformation is

such that S becomes the bifurcation surface of a bifurcate Killing horizon in the (artificial)

spacetime g̃ab. This will make the expression SBH[g̃,S] to be automatically well defined

(for exactly the same reasons that make SBH[g,Σ] to be well defined at the horizon of a

stationary black hole), hence having fulfilled properties a) and d) above. On the other

hand, the particular deformation g → g̃ that we choose will be such that properties b)

and c) above will also be obeyed.16

The basic observation to find such a deformation g̃ab is the following. Any spacetime

which, in certain coordinates (U, V, x1, x2), has a metric of the form:

ds2 = F (UV, x1, x2) dUdV + gij(UV, x1, x2) dxidxj , (4.4)

15Below we will consider explicitly the addition to the Lagrangian of a topological term (in particular, the

addition of a Gauss-Bonnet density). We will see that, in such a case, the final expression for the entropy

does get modified. However, this modification is just the shift of the entropy by a constant.
16The main difference between our proposal and that of [2] is that, if we deform the original spacetime in

the way proposed in [2], then property c) above does not hold. See the appendix for an explicit comparison.
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(where F and gij are arbitrary functions of (x1, x2) and the single combination UV ) admits

the following Killing vector:

ξ = U∂U − V ∂V , (4.5)

and has a bifurcate Killing horizon (the corresponding Killing vector being ξ above) at

UV = 0, with bifurcation surface (parametrized by (x1, x2)) at U = V = 0. In the metric

above, the null coordinates (U, V ) (that we will define below in a precise manner) can be

thought as a generalization of the usual Kruskal coordinates of the Schwarzschild black

hole. In fact, the simplest spacetime with a metric of the kind (4.4) is Schwarzschild

spacetime. The Killing vector (4.5) generates Lorentz boosts in the subspace parametrized

by (U, V ). Therefore (following the nomenclature used in [2]) we will refer to such metrics

as boost-invariant metrics.17

Given any spacetime metric gab and an arbitrary spacelike surface S, the basic idea

is the following. First, go to an appropriate system of “Kruskal coordinates” (U, V ) (to

be defined below) in the space orthogonal to S, parametrized in such a way that S lies at

U = V = 0. In general (unless S is already the bifurcation surface of a bifurcate Killing

horizon), the resulting metric will not be of the form (4.4). Therefore the next thing to do

will be to define a new (unphysical) spacetime g̃ab in a vicinity of U = V = 0, such that g̃ab

has the general form (4.4). Of course, the deformation has to be such that g̃ab is obtained

from gab in a unique fashion (at least modulo “gauge freedom” — see below). Let us next

proceed to explain the construction of g̃ab.

4.1.2 Boost-invariant projection of gab at S

Consider an arbitrary spacetime gab and an arbitrary spacelike surface S. As said, the first

thing to do is to find an appropriate system of null coordinates (U, V ) perpendicular to S,

such that S is at U = V = 0. For a completely generic spacetime, a “universal” coordinate

system, which is always possible to define in a vicinity of S, was introduced in [10, 2] (we

review this coordinate system in the appendix). It has the right property of automatically

bringing the metric to the form (4.4) whenever S is already the bifurcation surface of a

bifurcate Killing horizon.

However, the situation is somewhat simpler in the case of static spacetimes. Since all

examples considered below will be of this kind, let us write here the explicit coordinate

system that we will be using in such cases. Consider a static spacetime parametrized as in

eq. (2.1). In such a case, we define the following system of “Kruskal coordinates” (U, V )

given by:

u = t +

∫
dr

a(r)
, U = eu ,

v = t −
∫

dr

a(r)
. V = −e−v .

(4.6)

17Note that defining U = T + X, V = T − X, the metric (4.4) only depends on the Lorentz-invariant

combination −T 2 + X2.
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In this coordinate system, the metric (2.1) becomes:

ds2 =
a[r(UV )]

UV
dUdV + b[r(UV )] dΩ2 . (4.7)

Note that this metric has always the boost-invariant form (4.4). Actually, if we have a

regular event horizon at r = rH , we have that a(r) ∼ (r − rH) near the horizon, and

therefore:

r → rH ⇔ UV → 0 , (4.8)

as desired.18 Note that, in terms of the original coordinates, the Killing vector (4.5) is

ξ = ∂t.

Remember that C̃ is to be defined along outgoing null geodesic flow. Therefore, in the

particular case of static metrics (2.1) that we are considering, the surfaces S we will be

interested in will be spheres. An arbitrary sphere S in the spacetime (4.7) will be located

at (U0, V0, x
i) with fixed U0, V0. Therefore the next step is to shift coordinates:

U → (U + U0) , V → (V + V0) , (4.9)

so that we get S at U = V = 0. In general, since S will not be the bifurcation surface of a

Killing horizon, the resulting metric will not be boost-invariant there. Therefore we define

the boost-invariant projection of gab at S, denoted by g̃ab, as follows:

g̃ab ≡
N/2∑

n=0

(Cab)n (UV )n , (4.10)

(where we have omitted the explicit dependence on the xi), and where N is the order of

the higher derivative of the metric appearing in the Lagrangian. The coefficients (Cab)n
above are to be chosen as follows:

• First take (Cab)0 to be equal to gab at U = V = 0, in order to make both metrics to

coincide at S.

• Next, choose the remaining coefficients (Cab)n such that all independent curvature

invariants constructed out of g̃ab that contribute to SBH[g̃,S] match those constructed

out of gab at U = V = 0.

The last point requires some explanation. Notice that, in the case of a boost-invariant

metric, the number of curvature invariants that will enter in the final form of SBH is always

lower than in a generic (not boost-invariant) case. This is because, for a metric like (4.10),

the way in which S is embedded in g̃ab always makes both extrinsic curvatures of S to

vanish. This implies identities between the intrinsic curvature invariants of S and those of

18Since (4.6) always brings a static metric to the form (4.4), it might seem that we will always have a

Killing horizon. Of course, this is not the case. If we start with a metric without horizons, the region

UV = 0 will not be a physical part of the spacetime. The example of AdS considered below will be an

explicit example of this.
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g̃ab at S, which will reduce the number of independent curvature invariants appearing in

the formula for the entropy.

In particular, one can derive the following relation (already used in [2], and which

we will use below) relating the intrinsic curvature of S with the curvature invariants of

g̃ab at S: let ka and na be two null vectors normal to S along the coordinate U and V ,

respectively, and normalized so that kana = −1. Then, if (2)R is the intrinsic curvature of

S, the following identity holds:

(2)R =
(
R − 2tabRab + tactbdRabcd

)
U=V =0

(4.11)

where

tab ≡ −kanb − nakb (4.12)

is the induced metric in the space orthogonal to S. Such relations do not generically hold

if the metric is not boost invariant.19

Let us finish this section with the following comments:

• Note that the boost-invariant projection of gab at S does not always exist. This is

because we have at our disposal a maximum number of coefficients to fit and, in

principle, it is not ensured that they can be chosen to match all possible invariants

contributing to SBH[g̃,S].20 However, we will see that, in the case of the theories

Lg(R,P,Q), the number of curvature invariants entering in the final expression for

SBH[g̃,S] precisely coincides with the number of coefficients at our disposal if the

theory is ghost-free, thus making the construction of g̃ab always possible. We therefore

expect that, in a general theory of gravity, cancellation of the non-physical degrees of

freedom will make the election of a boost-invariant projection of the original metric

always possible.

• Note that any metric of the form (4.10) is boost-invariant (with S being the bifurca-

tion surface of a Killing horizon) for whatever choice of the coefficients (Cab)n. Iyer

and Wald’s proposal in [2] is in fact a similar way of deforming the original spacetime,

but with a different prescription to choose these coefficients (see appendix). Our par-

ticular choice will be justified a posteriori, since we will see that it is precisely this

choice what makes property c) at the beginning of this section to be satisfied.

• From the technical point of view, in this section we have focused in the case of

static spacetimes. We have done this just for simplicity of the exposition, but our

results remain valid (and our prescription for defining g̃ab unchanged) for general

19The precise statement is that the relation (4.11) holds at a given point if, at that point, the extrinsic

curvatures with respect to ka and na (Kab ≡ h i
a h j

b ∇ikj and Nab ≡ h i
a h j

b ∇inj , with hab = gab+kanb+nakb

the induced metric in S) satisfy K b
a N a

b = K c
c N d

d .
20Of course, the value of N in the expansion (4.10) can be higher than the order of the highest derivative

of the metric appearing in the Lagrangian. However, in such a case, all “extra” coefficients are redundant

since they do not contribute to the curvature at U = V = 0 (this is what we meant by “gauge freedom” in

section 4.1.1).
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spacetimes. The only technical difference is that, in a general case, the Kruskal

coordinates defined in (4.6) will not be appropriate. However, one can always define

the (U, V ) coordinates as explained in [10, 2] (see appendix), all the rest being exactly

the same.

4.1.3 General definition of C̃

Finally, let us provide here our definition of the C̃-function in a general theory of gravity.

Given a solution gab of the equations of motion, and given a spacelike surface S, we define

C̃ as:

C̃[g,S] ≡ SBH[g̃,S] = −2π

∫

S

∂L(g̃)

∂R̃abcd

ε̃ab ε̃cd

√
hdΩ , (4.13)

where g̃ab is the boost-invariant projection of gab at S, as defined in the previous section.

Notice that such a C̃-function automatically satisfies properties a), b) and d) enumerated

at the beginning of this section. Properties a) and d) are satisfied by construction. The fact

that C̃ equals the entropy of a stationary black hole when evaluated on a spacelike surface

Σ of its event horizon is maybe less evident. However, this fact follows from the definition

of g̃ab: remember that this metric is chosen so that every invariant contributing to the final

form of SBH[g̃,S] equals those of the original spacetime at S. At the bifurcation surface Σbif

of a regular event horizon, the spacetime metric gab will be automatically boost-invariant

(cf. [10] or last section for the particular case of static spacetimes). Therefore, the same

relations like (4.11) will hold both for gab and g̃ab at Σbif . This will make appear the same

independent curvature invariants in SBH[g̃,Σbif ] as in SBH[g,Σbif ]. Since g̃ab is chosen such

that those are equal, then one necessarily has:

C̃[g,Σbif ] = SBH[g,Σbif ] . (4.14)

This, together with the result (4.3) of [5], implies that:

C̃[g,Σ] = SBH[g,Σ] . (4.15)

Below we will see an explicit example of this in the case of the cosmological horizon of de

Sitter space.

Summarizing, we have been able to construct an algorithm that allows to define a

C̃-function in theories of higher curvature gravity, subject to properties a), b) and d)

above. However, we have not shown that property c) (namely, that C̃ is an non-decreasing

function along outgoing radial null geodesics) holds. As already emphasized, this is a

nontrivial task in a completely generic theory and in an arbitrary background; not only

because of the technical difficulty involved in the calculations, but also due to the fact that

the physical consistency requirements necessary to prove condition c) are not known in

general. Therefore, at this point, we can only leave our construction as a proposal whose

validity must in principle be tested in a case by case scenario. In any case, we provide in the

following section the explicit construction of the C̃-function in a particular case: theories

whose Lagrangian is given by eq. (1.2) in maximally symmetric backgrounds, where the

physical consistency conditions have been recently worked out [8]. We will see that in these

cases property c) above is indeed satisfied.
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5. C̃ in theories of the form Lg = Lg(R, P, Q)

We will devote this section to illustrate the construction of the C̃-function in a particular

case: maximally symmetric backgrounds in theories where the Lagrangian is of the form

given by eq. (1.2), i.e. Lg = Lg(R,P,Q) where P ≡ RabR
ab and Q ≡ RabcdR

abcd. We will

first review the consistency conditions for these backgrounds in these kind of theories, and

then we will compute C̃ following the prescription given in section 4. We will show how

this function satisfies property c) above whenever the physical consistency conditions are

met.

5.1 Consistency of the Lg(P,Q,R) theories

In general, it is known that higher derivative couplings introduce new degrees of freedom

in the theory. The case of theories linear in R, R2, P and Q in four dimensions was studied

a long time ago by Stelle [9]. It is found that the spectrum of these theories includes, in

addition to the massless graviton, a massive scalar (which can be tachyonic or not) and a

massive spin-2 field which is always a ghost.

Gravity theories with a gravitational Lagrangian of the form Lg(R,P,Q) (see eq. (1.2))

have been studied recently in [8]. Their consistency and stability of a given background

depends of course of the particular function Lg chosen and on the particular background

considered. Unfortunately, the perturbative expansion of these theories about a generic

background is not known. However, on maximally symmetric backgrounds, it can be

shown that the spectrum and the perturbative expansion of the Lg(R,P,Q)-theory are

equivalent those of the following Lagrangian:

Lg(R,C) = −2Λ + δR +
1

6m2
0

R2 +
1

2m2
2

CabcdC
abcd , (5.1)

about the same maximally symmetric background. Cabcd above denotes the Weyl tensor,

and the parameters δ, m2
0 and m2

2 appearing in Lg(R,C) are calculated from the original

Lagrangian Lg(R,P,Q) as follows [8]:

δ =
(
LR − RLRR − R2(LRP + 2

3LRQ) − R3(1
4LPP + 1

9LQQ + 1
3LPQ)

)
0
,

m−2
0 = 3

(
LRR + 2

3(LP + LQ) + R(LRP + 2
3LRQ) +

+ R2(1
4LPP + 1

9LQQ + 1
3LPQ)

)
0
,

m−2
2 =

(
LP + 4LQ

)
0
.

(5.2)

The subscript “0” in the r.h.s. denotes evaluation in the maximally symmetric background,

and LR, LRP , etc. denote the corresponding partial derivatives of Lg with respect to R,

P and Q. The value of the cosmological constant Λ = −1
2(Lg + · · ·)0 will not be needed in

what follows. The value of Λ is related to the curvature of the maximally symmetric space

by the equation of motion:

(2LQ + 3LP )R2 + 6LRR − 12Lg = 0 . (5.3)
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The theory (5.1) falls into the class of theories studied in [9],21 and therefore the

spectrum is just as explained above. Actually, the masses of the scalar and the spin-2 field

are proportional, respectively, to m0 and m2. Thus, while it is true that theories of the

kind Lg(R,P,Q) have, in general, a ghost-like spin-2 field in the spectrum, we see that

we can decouple the ghost if we have (LP + 4LQ)0 = 0. In particular, all theories with a

Lagrangian of the form:

Lg(R,P,Q) = Lg(R,T = Q − 4P ) (5.4)

will be automatically ghost-free. In [8] it was shown that this condition to have a ghost-free

theory remains valid in the case of a FRW cosmological background.

So the first thing we have to do is to make the theory ghost-free. In order to achieve

this, we restrict ourselves to Lagrangians of the form (5.4). Then the ghost decouples from

the theory and, further, Lg(R,C) in (5.1) reduces to:

Lg(R,C) = −2Λ + δR +
1

6m2
0

R2 , (5.5)

which is just of the form Lg = Lg(R) studied in section 3.22 There we showed that a

consistency requirement in this kind of theories is (see also [3]):

∂Lg(R,C)

∂R
> 0 . (5.6)

Using (5.2) and the no-ghost condition we see that this translates into:

LR − 2LT R > 0 , (5.7)

where the functions appearing above are functions only of R and T , and these invariants

are those of the maximally symmetric background considered.

5.2 C̃-function in maximally symmetric backgrounds

Let us see what we get in these theories from our general considerations to find the C̃-

function. First we observe that, for any metric gab, the functional form of SBH[g,S] in (4.2)

for a generic Lagrangian Lg(R,P,Q) is given by:

SBH[g,S] = 4π

∫

S

(LR + LP Rabtab + 2LQ Rabcdtactbd )
√

h dΩ , (5.8)

21This is due to the fact that any theory with Lg linear in R, R2, P and Q can be put into the form (5.1)

by using the identity:

CabcdC
abcd = Q − 2P +

1

3
R2 ,

and by using the fact that, in four dimensions, the Gauss-Bonnet density

GB = R2 − 4P + Q = CabcdCabcd − 2P +
2

3
R2

does not contribute to the equations of motion.
22The cosmological constant can be thought as a contribution to the matter Lagrangian satisfying the

null energy condition
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where we recall that tab is the induced metric on the spacetime orthogonal to S (see

eq. (4.12)). Now we wish to evaluate C̃[g,S], eq. (4.13). The first thing to do is to find g̃ab,

the boost-invariant projection of gab. For these theories, g̃ab will always be a metric of the

form (4.10) with N = 2, since the Lagrangian does not include any derivative of the metric

of degree greater than two. Maximally symmetric spaces can be always parametrized as

in (2.1). Therefore, after we switch to Kruskal coordinates (4.6), we will always get a boost

invariant Ansatz of the kind:

ds̃2 =
(
(CUV )0 + (CUV )1 UV

)
dUdV +

(
(CΩ)0 + (CΩ)1 UV

)
dΩ2 , (5.9)

where the coefficients (Cab)n will be determined below. Now, as stated in section 4, any

metric of the form (4.10), as the metric above, will always satisfy the identity (4.11).

Additionally, if we restrict ourselves to the ghost-free theories (5.4), then we will have

LP = −4LQ. Putting these two conditions together, we can see from (5.8) that:

SBH[g̃,S] = 4π

∫

S

(
(L̃R) − 2(L̃T )R̃

)√
hdΩ + 8π

∫

S

(L̃T ) (2)R
√

hdΩ , (5.10)

where tilded symbols denote the corresponding quantities evaluated in g̃ab. Now, notice

that the final expression for whatever choice of g̃ depends on just two curvature invariants:

R̃ and T̃ . Following section 4, we now choose the values of the coefficients in (5.9) so that:

• The n = 0 coefficients have to be chosen so that g̃ab = gab at S.

• The n = 1 coefficients have to be chosen so that R̃ = R and T̃ = T at S.

As already emphasized, terms of order ∼ (UV )2 or higher will not change the curvature at

U = V = 0. This means that we have the same number of coefficients to adjust in (5.9) than

the number of equations derived from the conditions above. Hence we see that, in general,

a boost-invariant projection such that R̃ = R and T̃ = T will always exist. Therefore we

get a C̃-function given by:

C̃[g,S] = 4π

∫

S

(LR − 2LT R)
√

h dΩ + 8π

∫

S

LT
(2)R

√
h dΩ . (5.11)

Integrating the above expression on a sphere of radius r0 (recall that for metrics of the

form (2.1) the surface S is a sphere), we get:

C̃ = 16π2b2 (LR − 2LT R) r2
0 + 64π2 LT , (5.12)

where the expressions in the r.h.s. only depend on R and T , the curvature scalars of the

maximally symmetric spacetime gab. Notice that, in general, eq. (5.11) reduces to the

C̃-function of section 3 for theories whose Lagrangian depends only on the Ricci scalar.

5.2.1 Properties of C̃

By construction, the expression (5.12) has to be well defined. In particular, it has to be

insensitive to the addition of a topological term to the Lagrangian.23 It is straightforward

23As mentioned already in footnote 11, in four dimensions we have two possible topological terms built

up of local integrals of the curvature: the first Euler class (i.e. the Gauss-Bonnet density) and the first

Pontrjagin class. The latter, however, does not belong to the Lg(R, P, Q) theories considered here.
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to check that the addition of a Gauss-Bonnet term (GB = R2−4P +Q) to the Lagrangian

just shifts C̃ by a constant (proportional to the Euler number of S).24

Second, if we were in a black hole spacetime, C̃ should equal the entropy of the black

hole when evaluated at the horizon. However, the result above is for maximally symmetric

spacetimes. Below we will consider explicitly the case of de Sitter space in the static patch.

In this case, we will verify that, when C̃ is evaluated at the cosmological horizon it exactly

equals its entropy as when computed from eq. (1.1). Moreover, notice also that C̃ reduces

to the entropy formula for Lovelock gravity obtained in [2, 11].

Finally, note that all the curvature scalars are constant in a maximally symmetric

space, and hence this function is a non-decreasing function of r0 if and only if the theory

is ghost-free (see eq. (5.7)). Note that this is a natural generalization of the “positivity

of energy” condition (3.9) for the Lg(R)-theories (which, in turn, was also a reasonable

generalization of the null energy condition — see the comment below eq. (3.10) and foot-

note 8). In fact, condition (3.9) can be interpreted as a no-ghost condition for the graviton,

since it means that the graviton kinetic term has to carry the right sign. Here such kind

of condition simply extends to the extra degrees of freedom appearing in the theory.

We could have expected to obtain another condition: the surviving scalar in the spec-

trum being non-tachyonic. The fact that this condition is not needed to have a well-behaved

C̃-function should not come as a surprise. A tachyon in the spectrum means an unstable

background, examples of which exist already in GR; nevertheless in GR a C̃-function exists

and the Second Law holds irrespective of the stability of the background.

To end our discussion, let us next consider explicitly the cases of de Sitter and Anti

de Sitter space.

5.2.2 de Sitter space

This case is interesting since we have a cosmological horizon. From a technical point of

view, a cosmological horizon is the same as an event horizon, so we will be able to check

explicitly that our C̃-function equals its real entropy when evaluated at the cosmological

horizon.

The metric of dS-space in the static patch can be written as:

ds2 = b2
(
− (1 − r2) dt2 + (1 − r2)−1 dr2 + r2 dΩ2

)
, (5.13)

with 0 ≤ r ≤ 1, −∞ ≤ t ≤ ∞; the cosmological horizon is at r = 1. First we have to go to

Kruskal coordinates. These are given by:

U = et

√
1 − r

1 + r
, V = −e−t

√
1 − r

1 + r
. (5.14)

These coordinates only cover the patch {U ≥ 0} ∪ {V ≤ 0} of dS space. We can trivially

extend the coordinates to the whole range −∞ ≤ U, V ≤ ∞ in such a way that r, t are

24Hence we see that eC is not exactly invariant against the addition of a Gauss-Bonnet density; however

(as in the entropy of a physical system) such a constant is clearly immaterial.
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defined in each one of the patches as:

r =
1 + UV

1 − UV
, t =

1

2
log

∣∣∣∣
U

V

∣∣∣∣. (5.15)

The metric is given, for all U, V , by:

ds2 = b2

(
− 4

(1 − UV )2
dUdV +

(
1 + UV

1 − UV

)2

dΩ2

)
. (5.16)

These coordinates cover all of de Sitter space. The horizon lies at UV = 0. Notice also

that this metric is a function of the single combination UV ; therefore, at the bifurcate

horizon U = V = 0 (and only there), the metric is automatically boost-invariant. In fact,

the vector:

ξ = U∂U − V ∂V (5.17)

is a Killing vector of this metric, and vanishes at U = V = 0.

Next we shift the coordinates in order to have an arbitrary sphere of radius r0 at

U = V = 0. We make the shift U → (U + U0), V → (V + V0), so that U = V = 0 becomes

a sphere of radius:25

r2
0 =

(
1 + U0V0

1 − U0V0

)2

. (5.18)

The metric in terms of the shifted coordinates is given by

ds2 = b2

(
− 4

(1 − (U + U0)(V + V0))
2 dUdV +

(
1 + (U + U0)(V + V0)

1 − (U + U0)(V + V0)

)2

dΩ2

)
. (5.19)

Notice that this metric is not of the boost-invariant form eq. (4.4). In fact, ξ in (5.17)

is no longer a Killing vector. However, it will be a Killing vector of its boost invariant

projection at the surface U = V = 0 (i.e. r = r0 in some patch), and moreover this surface

will become the bifurcation surface of a Killing horizon in the g̃ab-space.

Let us check explicitly that such a boost invariant projection exists for de Sitter space.

The Ansatz for g̃ab is given in eq. (5.9). Next have to impose the conditions stated in

section 4 to get the correct values for the coefficients (Cab)n. In order to match with the

actual dS metric (5.19) at (U, V ) = (0, 0) we must impose

(CUV )0 = −(1 + r0)
2, (CΩ)0 = r2

0. (5.20)

The other two coefficients are adjusted so that R̃ = RdS = 12/b2 and T̃ = TdS = −120/b4.

We get two possible solutions for each coefficient given by:

(CUV )1 =
1

r2
0

(1 + r0)
4

(
5

2
− 3r2

0 ±
√

6|1 − r2
0|

)
(5.21)

(CΩ)1 = (1 + r0)
2

(
1 ±

√
6

2
|1 − r2

0|
)

(5.22)

25Note that if the point (U0, V0) is located in the initially considered patch, so that U0 > 0, V0 < 0, then

r0 is always smaller than 1.
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Finally, using (5.11) and integrating on the sphere of constant radius r0, we get a

C̃-function given by eq. (5.12), where the r.h.s. is to be evaluated in de Sitter space. It

can be explicitly checked that g̃ab at r0 = 1 exactly matches the series expansion of the

de Sitter metric (5.16) up to second order. Therefore, if C̃ is evaluated at the cosmological

horizon r0 = 1, it will equal its entropy as computed from eq. (1.1).

5.2.3 Anti de Sitter space

The metric of AdS can be written as:

ds2 = b2
(
− (1 + r2) dt2 + (1 + r2)−1 dr2 + r2 dΩ2

)
, (5.23)

with 0 ≤ r ≤ ∞ and −∞ ≤ t ≤ ∞. The relevant curvature scalars curvature are given

by R = −12/b2 and T = 120/b4. These coordinates already cover the whole of AdS space.

Next we define Txuskal coordinates by:

u = t + arctan r , U = eu ,

v = t − arctan r . V = −e−v .
(5.24)

The metric becomes:

ds2 = b2

[
1

UV
sec2

(
1

2
log(−UV )

)
dUdV + tan2

(
1

2
log(−UV )

)
dΩ2

]
. (5.25)

This metric is of the boost invariant form eq. (4.4), so it apparently has a bifurcate horizon

at (U, V ) = (0, 0), that does not exist in AdS space. In fact, this “horizon” is just an

artifact of the change of coordinates, and the region UV = 0 is unphysical and it is not

covered by the metric above. Notice that the relation between the original coordinate r

and (U, V ) is:

UV = − exp(2 arctan r) (5.26)

and hence UV ∈ (−eπ,−1]. It could be argued that other branches of the arctan should

be used. Taking a different branch of the arctan changes the relation (5.26) by

UV = − exp(2 arctan r) exp(2πn) (5.27)

for some integer n. Now, we can see that this integer must be minus infinity to reach

UV = 0, therefore we see that the “horizon” generated at UV = 0 is definitely an artifact

of the change of coordinates and is outside AdS space.

Next we proceed analogously to the dS case. We shift the coordinates as (U, V ) →
(U + U0, V + V0) (taking into account that U0V0 ∈ (−eπ,−1], in order to remain in AdS

space26). The surface U = V = 0 becomes a sphere of radius:

r2
0 = tan2

(
1

2
log(−U0V0)

)
. (5.28)

26Or eπnU0V0 ∈ (−eπ,−1] for some n ∈ Z for a different branch of the arctan, considering also branches

with negative r.
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Next we compute the boost-invariant projection g̃ab at U = V = 0. Again, we impose that

this metric coincides with that of AdS at U = V = 0, and that R̃ = RAdS and T̃ = TAdS

at U = V = 0. It can be explicitly checked that this metric is given by (5.9) with:

(CUV )0 = −e−2 arctan r0(1 + r2
0),

(CUV )1 =
e−4 arctan r0(1 + r2

0)
2

r2
0

(
5

2
+ 3r2

0 ±
√

6
√

1 + 2r2
0 + 11r4

0

)

(CΩ)0 = r2
0, (5.29)

(CΩ)1 = e−2 arctan r0(1 + r2
0)

(
1 ±

√
6
√

1 + 2r2
0 + 11r4

0

)

Finally, the C̃-function is given by eq. (5.12), where the r.h.s. is now to be evaluated in

AdS.

As already mentioned in the Introduction, let us stress here that we are by no means

claiming that the above function is the holographic dual of a true field theory c-function

(since, for AdS, such a function should to be a constant). In order to address Questions 1

and 2 in the Introduction, the only property that we had to demand from our “c-function”

C̃ was that it has to be non-decreasing along outgoing null geodesic flow. This is exactly

what we got.

However, let us mention that, even without using any considerations on the dual CFT,

one would maybe expect that any geometric function in AdS should be independent of the

radial coordinate, due to the well-known “scale invariance of Anti de Sitter space”. Let us

recall here that the latter is a property of the Poincaré patch of AdS, but not a property

of global AdS (whose metric is the one that we have used here27). It is easy to see that

had we constructed the C̃-function from the metric in the Poincaré patch

ds2 = b2

(
z2(−dτ2 + dx2 + dy2) +

dz2

z2

)
(5.30)

with −∞ < τ, x, y < ∞, 0 < z < ∞, we would have found C̃ ∼ z2 dx∧dy, that is invariant

under the symmetry (τ, x, y, z) → (aτ, ax, ay, a−1z) (regardless of the fact of C̃ being the

holographic dual of a field theory c-function or not). Note however that these are not good

coordinates to address issues like the entropy contained in a given region of spacetime, since

there are no closed, compact spacelike 2-surfaces for constant τ and z in these coordinates.

6. Conclusions

In this paper we have explored to which extent the possibility of establishing a well-defined

holographic bound, as well as the Second Law of black hole mechanics, extend to general

theories of gravity with higher curvature interactions. As we have shown, these two issues

seem to imply each other via the existence of a “c-function”, i.e. a never decreasing function

along outgoing null geodesic flow.

27We wish to thank Ofer Aharony for pointing this out to us.
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It would be nice to explore the implications that the general holographic bound that

we propose here may have along the lines of the covariant entropy bound of [13]. In

order to have well defined holographic screens, it seems crucial to prove that a suitable

generalization of the focussing theorem holds for ϑ̃ ≡ d log C̃/dλ. We did not attempt to

do this in this paper, but it seems that such a generalization should hold. After all, the

focussing theorem plays a crucial role in GR in the proof of the Second Law and in the

proof of all singularity theorems. In a sense, a convenient generalization of Raychaudhuri

equation and the focussing theorem could be taken as a good starting point to define what

a good theory of gravity should be (including its recognition as a holographic theory).

From a more technical point of view, it would be interesting to understand the sig-

nificance of the boost invariant projection g̃ab defined in section 4.1.2. This projection is

central in our construction in order to arrive to the final expression for the C̃-function.

However, we do not understand the real significance (if any) of this spacetime. After all,

such a spacetime looks in the end like quite a spurious object (having, in addition, a lot

of “gauge freedom”) which might well be not much more than a mere artifact in order to

obtain expressions like (4.11), which seem to play a crucial form in the final form of C̃.

Also, the fact that we have to go to a special coordinate system to find g̃ab is somewhat

unsatisfactory. It would be very nice to understand the covariant meaning of the boost

invariant projection that we define.

Finally, let us mention here that an interesting corollary of our definition of C̃ is that

it constitutes, by itself, a possible candidate to define the entropy of a dynamical black

hole, since it satisfies by construction all the properties required in [2]. However, it will in

general differ from the proposal of Iyer and Wald (see the appendix). It would be nice to

check the implications of this.

Our results are far from general. However, we believe that the ideas presented and

developed in this paper should be of quite general applicability. It would be very interesting

to understand them in depth and to check our proposal in more general theories and more

general backgrounds.
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We also want to thank the “Bar-Cafeteŕıa Mozar” in Madrid for hospitality during the early

stages of this project. D.C. also thanks the Weizmann Institute of Science for hospitality

during the completion of this work.

The work of D.C. is supported by the University of Cambridge. The work of E. L.-T.

has been supported by a Marie Curie Fellowship under contract MEIF-CT-2003-502349,

the Spanish Grant BFM2003-01090, The Israel-US Binational Science Foundation, the ISF

Centers of Excellence Program and Minerva.

– 23 –



J
H
E
P
0
1
(
2
0
0
7
)
0
4
5

A. Iyer and Wald proposal for the entropy of a dynamical black hole

As mentioned in the body of the paper, our definition of the C̃-function is based on the

proposal of Iyer and Wald [2] to define the entropy of a non-stationary black hole. Such

a problem faces the same kind of difficulties that we had to face in order to extend the

entropy formula eq. (1.1) to general surfaces which need not be a cross-section of a Killing

horizon (since the event horizon of a non-stationary black will not be, in general, a Killing

horizon). Also, and as in our definition of C̃, one would require of any generalization of the

entropy formula to reduce to eq. (1.1) when evaluated on the horizon of a stationary black

hole. For the interested reader, we review in this appendix the solution to this problem

found by Iyer and Wald.

The basic idea is as follows: instead of modifying the functional form of the entropy

functional SBH[g,Σ] given in eq. (1.1), Iyer and Wald provided a specific algorithm to

deform the dynamical metric gab in a neighbourhood of a spacelike cross-section of the

event horizon of a dynamical black hole. Let us denote such a cross-section by Σdyc. This

deformed spacetime, that here we call ĝab, is such that gab = ĝab at Σdyc. Moreover, it has

the property that Σdyc becomes the bifurcation surface of a bifurcate Killing horizon of the

metric ĝab. This will make the quantity SBH[ĝ,Σdyc] to be automatically well defined (cf.

the discussion at the beginning of section 4.1). Finally, it turns out that ĝab = gab when

the “original” spacetime is that of a stationary black hole, and therefore SBH[ĝ,Σdyc] =

SBH[g,Σ]. Let us summarize now the prescription of Iyer and Wald to obtain ĝab from gab.

A.1 Boost-invariant part of gab at Σdyc

Their algorithm to find ĝab is as follows. First choose, at any point p in Σdyc, a couple

of independent null vectors (unique up to scale) ka and na orthogonal to Σdyc, obeying

the (conventional) normalization condition kana = −1. Take now a neighbourhood of

Σdyc small enough such that any point x in the vicinity of Σdyc lies on a unique geodesic

orthogonal to Σdyc. Next define the following coordinate system in the space orthogonal to

Σdyc:
28 given x, find p in Σdyc and the (unique) geodesic connecting p and x. Parametrize

this geodesic such that x is at unit affine parameter from p, and find its tangent vector va

of such geodesic at p. Finally, assign the coordinates (U, V ) to x in the 2-space spanned

by ka and na to be the components of va along ka and na. Note that, in this coordinate

system, Σdyc lies at U = V = 0.

The next step is to Taylor-expand every component of gab in U and V around U =

V = 0 up to some order N (to be fixed below). In this series expansion, remove all terms

which do not contain the same number of U ’s and V ’s. The resulting metric, ĝN
ab, is called

the boost-invariant part of order N of gab at Σdyc. Finally, choose the order N of ĝN
ab to

be equal to the higher derivative of the metric appearing in the Lagrangian. Note that

the boost-invariant part ĝN
ab is a function of the single combination UV , and therefore

28This coordinate system was used in [10], and their relation to the properties of spacetimes with bifurcate

Killing horizons was studied there.
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is of the boost-invariant form (4.4).29 Therefore the surface U = V = 0 becomes the

bifurcation surface of the Killing horizon UV = 0, the corresponding Killing vector being

ξ = U∂U − V ∂V . All this implies that the quantity:

Sdyc[g,Σdyc] ≡ SBH[ĝ,Σdyc] = −2π

∫

Σdyc

∂L(ĝ)

∂R̂abcd

ε̂ab ε̂cd

√
h dΩ . (A.1)

is automatically well defined and free of all the ambiguities present in SBH[g,Σdyc] [5, 2].

Most importantly, in the case of a stationary black hole (and therefore Σdyc = Σ), it turns

out that:

Sdyc[g,Σ] = SBH[g,Σ] , (A.2)

since, for a stationary black hole, the metric gab at Σ is automatically boost invariant [10, 2],

which implies that gab equals ĝab at Σ. This fact motivated the proposal of [2] to take

SBH[ĝ,Σdyc] as a possible candidate for the physical entropy of a dynamical black hole.

Notice that the definition (A.1) for the entropy of a dynamical black hole is in principle

evaluated on a cross-section of the event horizon. However, the fact that Σdyc is an event

horizon is not required at any point. This is why we used a very similar prescription

to extend the definition of the entropy functional (1.1) to arbitrary spacelike surfaces

(regardless of them being event horizons or not).

A.2 Comparison between C̃ and Sdyc

Notice that the functional Sdyc[g,S] has all the required properties that we discussed in

section (4.1) in order for it to be well defined on arbitrary spacelike surfaces. So, in principle,

it is a legitimate candidate for a C̃-function satisfying the properties a)-d) established at

the beginning of section 4. Let us therefore compare here our proposal for C̃[g,S] and

Sdyc[g,S].

First, note that it is clear that:

C̃[g,Σ] = Sdyc[g,Σ] = SBH[g,Σ] (A.3)

when evaluated on a cross-section Σ of the event horizon of a stationary black hole. How-

ever, in general:

C̃[g,S] 6= Sdyc[g,S] (A.4)

on an arbitrary spacelike surface S. This is because, since g̃ab and ĝab are different metrics,

their associated curvature scalars at S will not coincide in general: only on a black hole

horizon it is ensured that (at least to order N in an expansion of the kind of (4.10)) we will

have g̃ab = ĝab = gab. The reason for defining the C̃-function as we did (as opposed to using

Iyer and Wald’s boost-invariant part to deform the spacetime metric) is because, at least

in the cases that we have been able to check, only if C̃ is defined as C̃[g,S] ≡ SBH[g̃,S], the

conditions for it to be a non-decreasing function along outgoing null geodesic flow match

the physical requirements of the theory.

29Actually, bgab is a power series of the form (4.10). The difference between bgab and the boost invariant

projection egab defined in the paper is the prescription to fix the coefficients in (4.10).
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Let us explicitly verify this in an example. First note that, since ĝab is also of the

boost-invariant form (4.10), the identity (4.11) will also hold for the curvature invariants

associated to ĝab. This means that a “hatted” analogous of (5.10) also holds for Sdyc[ĝ,S].

Considering for definiteness the case of AdS space, using Iyer and Wald’s prescription we

had obtained a C̃-function given by:

C̃ ≡ Sdyc = 16π2b2(L̂R − 2L̂T R̂) + 64π2L̂T (A.5)

where hats denote evaluation of all expressions in ĝab at the surface S. In this case, the

final requirement of C̃ being non-decreasing of r would not have been equivalent to the

physical requirements (5.7). This is because the curvature scalars of the boost-invariant

part of AdS, when evaluated at a generic surface r = r0, do not coincide with those of AdS

itself. In particular, one finds:

R̂ =
9r4

0 − 4r3
0 + 10r2

0 + 1

6r2
0(1 + r0)2

RAdS ,

T̂ =
−12r4

0 + 36r3
0 − 45r2

0 + 8r0 − 9

15r2
0(1 + r0)2

TAdS ,

(A.6)

Therefore, even if we see that Sdyc[g,S] is well defined, the conditions for it to be non-

decreasing do not coincide with the physical requirements (5.7). Notice also that, in general

Sdyc[g,S] has the additional unsatisfactory property that the conditions that will have to

be satisfied for it to be non-decreasing will depend on the detailed form of the Lagrangian

Lg(R,T ). However, the ghost-free condition (5.7) is generic for any Lagrangian of the form

Lg(R,P,Q) = Lg(R,T ).
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